4 research outputs found

    Coordination and cognition in pure nutritional Wernicke's encephalopathy with cerebellar degeneration after COVID-19 infection: A unique case report

    No full text
    Background: Alcoholic cerebellar degeneration is a restricted form of cerebellar degeneration, clinically leading to an ataxia of stance and gait and occurring in the context of alcohol misuse in combination with malnutrition and thiamine depletion. However, a similar degeneration may also develop after non-alcoholic malnutrition, but evidence for a lasting ataxia of stance and gait and lasting abnormalities in the cerebellum is lacking in the few patients described with purely nutritional cerebellar degeneration (NCD). Methods: We present a case of a 46-year-old woman who developed NCD and Wernicke's encephalopathy (WE) due to COVID-19 and protracted vomiting, resulting in thiamine depletion. We present her clinical course over the first 6 months after the diagnosis of NCD and WE, with thorough neuropsychological and neurological examinations, standardized clinical observations, laboratory investigations, and repeated MRIs. Results: We found a persistent ataxia of stance and gait and evidence for an irreversible restricted cerebellar degeneration. However, the initial cognitive impairments resolved. Conclusions: Our study shows that NCD without involvement of alcohol neurotoxicity and with a characteristic ataxia of stance and gait exists and may be irreversible. We did not find any evidence for lasting cognitive abnormalities or a cerebellar cognitive-affective syndrome (CCAS) in this patient

    Structural white matter networks in myotonic dystrophy type 1

    Get PDF
    Contains fulltext : 201926.pdf (publisher's version ) (Open Access)The myriad of neuropsychiatric manifestations reported in myotonic dystrophy type 1 may have its origin in alterations of complex brain network interactions at the structural level. In this study, we tested the hypothesis that altered white matter microstructural integrity and network organisation were present in a cohort of individuals with DM1 compared to unaffected controls, which was expected to be associated with CNS related disease manifestations of DM1. We performed a cross-sectional neuropsychological assessment and brain MRI in 25 myotonic dystrophy type 1 (DM1) patients and 26 age, sex and educational level matched unaffected controls. Patients were recruited from the Dutch cohort of the OPTIMISTIC study, a concluded trial which had included ambulant, genetically confirmed DM1 patients who were severely fatigued. We applied graph theoretical analysis on structural networks derived from diffusion tensor imaging (DTI) data and deterministic tractography to determine global and local network properties and performed group-wise comparisons. Furthermore, we analysed the following variables from structural MRI imaging: semi-quantitative white matter hyperintensity load andwhite matter tract integrity using tract-based spatial statistics (TBSS). Structural white matter networks in DM1 were characterised by reduced global efficiency, local efficiency and strength, while the network density was compatible to controls. Other findings included increased white matter hyperintensity load, and diffuse alterations of white matter microstructure in projection, association and commissural fibres. DTI and network measures were associated (partial correlations coefficients ranging from 0.46 to 0.55) with attention (d2 Test), motor skill (Purdue Pegboard test) and visual-constructional ability and memory (copy subtest of the Rey-Osterrieth Complex Figure Test). DTI and network measures were not associated with clinical measures of fatigue (checklist individual strength, fatigue subscale) or apathy (apathy evaluation scale - clinician version). In conclusion, our study supports the view of brain involvement in DM1 as a complex network disorder, characterised by white matter network alterations that may have relevant neuropsychological correlations. This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013; grant agreement n° 305,697) and the Marigold Foundation.10 p

    Characterization of EEG-based functional brain networks in myotonic dystrophy type 1

    No full text
    Contains fulltext : 220138.pdf (Publisher’s version ) (Closed access)Objective: In the autosomal dominant, multisystem, chronic progressive disease myotonic dystrophy type 1 (DM1), cognitive deficits may originate from disrupted functional brain networks. We aimed to use network analysis of resting-state electro-encephalography (EEG) recordings of patients with DM1 and matched unaffected controls to investigate changes in network organization in large-scale functional brain networks and correlations with cognitive deficits. Methods: In this cross-sectional study, 28 adult patients with genetically confirmed DM1 and 26 age-, sex- and education-matched unaffected controls underwent resting-state EEG and neuropsychological assessment. We calculated the Phase Lag Index (PLI) to determine EEG frequency-dependent functional connectivity between brain regions. Functional brain networks were characterized by applying concepts from graph theory and compared between-groups. Network topology was evaluated using the minimum spanning tree (MST). We evaluated correlations between network metrics and neuropsychological tests that showed statistically significant between-group differences. Results: Functional connectivity estimated as whole-brain median PLI for DM1 patients versus healthy controls was higher in theta band (0.141 [0.050] versus 0.125 [0.018], p = 0.029), and lower in the upper alpha band (0.154 [0.048] versus 0.182 [0.073], p = 0.038), respectively. Functional MST-constructed networks in DM1 patients were significantly dissimilar from healthy controls in the delta, (p = 0.009); theta, (p = 0.009); lower alpha, (p = 0.036); and upper alpha, (p = 0.008) bands. In evaluation of local MST network measures, trends toward networks with higher global integration in the theta band and lower global integration in the upper alpha band were observed. Compared to unaffected controls, DM1 patients performed worse on tests of attention, motor function, executive function and visuospatial memory. Visuospatial memory correlated with the global median PLI in the upper alpha band; the Stroop interference test correlated with betweenness centrality in this band. Conclusion: This study supports the hypothesis that brain changes in DM1 give rise to disrupted functional network organization, as modelled with EEG-based networks. Further study may help unravel the relations with clinical brain-related DM1 symptoms. Significance: EEG network analysis has potential to help understand brain related DM1 phenotypes. Funding This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 305697 (OPTIMISTIC) and the Marigold Foundation.10 p
    corecore